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ABSTRACT: Addition of E (E = 0.125S8, Se) to
[Cp*2Co][U(O)(NR2)3] (R = SiMe3) in THF results in
the isolation of the chalcogen-substituted uranyl analogues
[Cp*2Co][U(O)(E)(NR2)3] [E = S (1), Se (2)] in good
yields. Similarly, addition of 1 equiv of 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO) to [Cp*2Co][U-
(O)(NR2)3] affords the uranyl complex [Cp*2Co]-
[UO2(NR2)3] (3). All of the complexes were fully
characterized, including analysis by X-ray crystallography.
They were also analyzed by density functional theory
calculations to probe the changes in the U−E bond as
group 16 is descended.

The uranyl ion (UO2
2+) is the most ubiquitous and

technologically important fragment in uranium chem-
istry,1−4 and in an effort to further understand this ion, a
diverse series of isoelectronic analogues have been synthesized,5

including [U(NR)2]
2+,6,7 [R2CUO]2+,8 [NUO]+,9 and

[OUCl]3+.10,11 Also worthy of note is the recent report of
the first terminal uranium nitride by Liddle and co-workers.12

The exploration of the electronic structure of these complexes
has provided important new insights into uranium−ligand
bonding, especially in regard to the extent of f orbital
participation.13,14 Despite these recent successes, the only
observation of a chalcogen-substituted uranyl analogue is T-
shaped US3, which was isolated in an Ar matrix at 7 K.15

However, there is a renewed interest in the synthesis of
uranium chalcogenides.16 For example, the Meyer group
recently reported the synthesis of several bridged chalcogenide
complexes of U(IV),17 while our laboratory isolated a series of
terminal U(IV) chalcogenido complexes, [U(E)(NR2)3]

− (E =
S, Se, Te; R = SiMe3).

18 Herein we report the synthesis of the
chalcogenide-substituted uranyl analogues [Cp*2Co][U(O)-
(E)(NR2)3] (E = S, Se; R = SiMe3; Cp* = C5Me5

−), formed by
chalcogen atom transfer to [Cp*2Co][U(O)(NR2)3]. They
represent the first isolable uranyl analogues containing the
heavier chalcogens.
Addition of 0.125 equiv of S8 to a tetrahydrofuran (THF)

solution of [Cp*2Co][U(O)(NR2)3]
18 results in an immediate

color change from pale orange to dark green. Crystallization of
the resulting material from THF/hexanes affords the U(VI)
oxysulfido complex [Cp*2Co][U(O)(S)(NR2)3] (1) as a dull-

green microcrystalline powder in 82% yield (Scheme 1).
Complex 1 is readily soluble in THF or pyridine (py) but only

sparingly soluble in nonpolar solvents such as toluene.
Importantly, its 1H NMR spectrum in py-d5 exhibits two
resonances at 0.83 and 1.29 ppm, assignable to the protons of
the silylamide methyl substituents. The resonances are in a 1:1
ratio as a consequence of the asymmetry in the axial ligand
environment and limited rotation about the U−N bond. A
similar inequivalence was observed in the 1H NMR spectrum of
U(O)(Cl)(NR2)3.

11 Lastly, the methyl environment of the
cobaltocenium cation is observed as a broad singlet at 1.52
ppm.
Similarly, addition of 1 equiv of Se to a THF solution of

[Cp*2Co][U(O)(NR2)3] affords the oxyselenido derivative
[Cp*2Co][U(O)(Se)(NR2)3] (2) as an orange-brown micro-
crystalline powder in 64% yield (Scheme 1). Complex 2 has
solubility properties identical to those of 1 and exhibits similar
1H NMR spectroscopic features. Specifically, its 1H NMR
spectrum in py-d5 exhibits two resonances at 0.83 and 1.54 ppm
in a 1:1 ratio, assignable to the protons of the silylamide methyl
substituents, while the cobaltocenium cation is observed at 1.49
ppm as a broad singlet.
To make further spectroscopic and structural comparisons,

we prepared the isostructural uranyl derivative. Accordingly,
addition of 1 equiv of 2,2,6,6-tetramethylpiperidine-1-oxyl
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(TEMPO)19 to [Cp*2Co][U(O)(NR2)3] in THF results in a
color change from pale orange to dark orange. Recrystallization
from THF/hexanes affords [Cp*2Co][UO2(NR2)3] (3) as an
orange-brown microcrystalline powder in 67% yield (Scheme
1). Complex 3 has solubility properties similar to those of 1 and
2; however, as expected, its 1H NMR spectrum in py-d5 features
a single resonance for the methyl groups of the silylamide
ligands at 0.79 ppm, while the [Cp*2Co]

+ cation is observed at
1.75 ppm as a broad singlet. Following the formation of 3 by
1H NMR spectroscopy in py-d5 revealed the concomitant
formation of tetramethylpiperidine (TMPH). Its presence is
likely the result of TMP· radical formation upon O-atom
transfer followed by H-atom abstraction from the solvent.19,20

Complexes 1 and 2 crystallize in the orthorhombic space
group Pca21, while complex 3 crystallizes in the triclinic space
group P1 ̅. The solid-state molecular structures of 1 and 2 are
shown in Figure 1, and Table 1 provides a summary of relevant

structural parameters for 1−3. Complexes 1−3 each feature a
trigonal-bipyramidal geometry about their uranium centers, in
which the three silylamide ligands occupy the equatorial plane
and the two group 16 atoms occupy the axial positions.
Complex 3 is similar to the previously reported uranyl complex
[Na(THF)2][UO2(NR2)3].

21 Importantly, for 1 and 2, the oxo
and chalcogenido ligands are disordered over both axial
positions in a 50:50 ratio. However, the four atomic positions
were successfully located and refined for both complexes. As
expected for uranyl analogues, the O−U−E bond angles [1:
O1a−U1−S1a = 177.4(7)°; 2: O1−U1−Se1 = 177.3(4)°; 3:
O1−U−O2 = 178.8(3)°] are linear. The U−O bond distances
in 3 [U1−O1 = 1.811(5) Å, U1−O2 = 1.788(5) Å] are typical

of the uranyl fragment,1 but interestingly, the U−O bond
distances in 1 and 2 are somewhat shorter [1: U1−O1a =
1.74(2) Å; 2: U1−O1 = 1.739(8) Å], possibly as a consequence
of the observed disorder. It is also interesting that the U−E
bond distances [1: U1−S1a = 2.390(8) Å; 2: U1−Se1 =
2.533(1) Å] are contracted by ∼0.1 Å relative to the U−E bond
distances exhibited by the terminal chalcogenide complexes
[U(E)(NR2)3]

− [E = S: 2.4805(5) Å; E = Se: 2.6463(7) Å].18

This contraction is larger than expected on the basis of the
change in ionic radius in going from U4+ to U6+,22 which may
be evidence for the presence of the inverse trans influence in 1
and 2.3,23 For further comparison, the U−Syl bond length in T-
shaped US3 was calculated to be 2.32 Å,24 while that in bent
US2 was calculated to be 2.38 Å.15 Finally, the average U−N
bond distances [1: av U−N = 2.29 Å; 2: av U−N = 2.28 Å; 3:
av U−N = 2.32 Å] are contracted relative to that in
[U(O)(NR2)3]

− (av U−N = 2.37 Å).18

Table 1 also contains density functional theory (DFT)-
calculated structural data for the anions in 1, 2, and 3. In
general, there is very good agreement between the experimental
and calculated results, with the latter slightly overestimating the
U−O and U−N bond lengths. The experimentally observed
reductions in the U−O and U−N distances in going from 3 to
1 and 2 are reproduced by the calculations, and there is an
essentially exact match between theory and crystallography for
the U−S and U−Se distances.
We also investigated complexes 1 and 2 by Raman

spectroscopy. The Raman spectrum of 1 (KBr mull) exhibits
a strong absorption at 395 cm−1, which we assigned to the
ν(US) stretch. This spectrum also features weak absorptions
at 588 and 619 cm−1 assignable to ν(U−N) stretching modes
and a weak absorption at 820 cm−1 assignable to the ν(UO)
stretch. These values match well with the corresponding DFT-
calculated normal modes [ν(US) = 376 cm−1; ν(U−N) =
575, 575, 586 cm−1; ν(UO) = 811, 901 cm−1],25 while the
observed ν(UO) stretch is similar to that found for
[Na(THF)2][UO2(NR2)3] (805 cm−1).21 The ν(US)
absorption is also observable in THF solution (395 cm−1).
To provide further confirmation of the assignment of the US
stretch, the 34S isotopomer 1-34S was synthesized by reacting
0.125 equiv of 34S8 (99.91%

34S) with [Cp*2Co][U(O)(NR2)3]
[see the Supporting Information (SI)]. Its solution-phase
(THF) Raman spectrum exhibits an absorption at 388 cm−1,
corresponding to a shift of 7 cm−1, which is consistent with the
change expected from the reduced mass calculation (10 cm−1).
Interestingly, US3 was calculated to exhibit a symmetric (a1)
stretching mode at 423 cm−1,15,24 which is close to that
observed for 1. Lastly, the solution-phase (THF) Raman
spectrum of 2 exhibits an absorption at 245 cm−1 assignable to
the ν(USe) stretch. This frequency is very similar to the
DFT-calculated one (243 cm−1). Unfortunately, the ν(UO)
absorption in 2 could not be assigned because of overlapping
solvent modes, but normal modes involving U−O stretching
were located computationally at 807 and 896 cm−1.
Attempts to isolate the [OUTe]2+ analogue were unsuccess-

ful. For example, addition of 1 equiv of Te to [Cp*2Co][U-
(O)(NR2)3] in THF resulted in no reaction, even after
prolonged reaction times (see the SI), while attempts to install
Te by employing Et3P as a Te-atom transfer reagent only
generated intractable reaction mixtures (see the SI). We suggest
that Te does not possess the oxidizing strength needed to
stabilize the 6+ oxidation state in this system, so the isolation of
the [OUTe]2+ derivative will likely require a more electron-

Figure 1. Solid-state molecular structures of (left) [Cp*2Co][U(O)-
(S)(NR2)3] (1) and (right) [Cp*2Co][U(O)(Se)(NR2)3] (2) with
30% probability ellipsoids. Solvate molecules, [Cp*2Co]

+ cations,
disordered components, and H atoms have been omitted for clarity.

Table 1. Selected Experimental and Calculated Bond
Distances (Å) and Angles (deg) for
[Cp*2Co][U(O)(E)(NR2)3] [E = S (1), Se (2), O (3); R =
SiMe3]

1 2 3

U1−O1 1.74(2) 1.739(8) 1.811(5)
U1−O2 1.75(3) 1.706(9) 1.788(5)
U−O calcd 1.800 1.800 1.831, 1.826
U1−E1 2.390(8) 2.533(1) −
U1−E2 2.382(11) 2.563(3) −
U−E calcd 2.393 2.559 −
(U−N)av 2.29 2.28 2.32
(U−N)av calcd 2.320 2.311 2.355
O1−U1−E1 177.4(7) 177.3(4) 178.8(3)
O2−U1−E2 176.8(10) 176.3(7) −
O−U−E calcd 179.9 178.9 179.9
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donating ligand environment than the tris(silylamide) scaffold
currently employed.
To obtain a better understanding of the electronic structure

of the anions in 1−3, and in particular to probe the covalency
of the U−E bond, we returned to DFT calculations. Figure 2

presents a molecular orbital energy diagram for the U−E
bonding levels along with a three-dimensional representation of
one of the U−E σ orbitals for each complex. The valence
electronic structure of the Se system is the “cleanest” in the
sense that the U−O and U−Se orbitals are well-separated in
energy and show little mixing with each other or with the other
valence orbitals. For both U−O and U−Se bonding in this
complex, the σ orbitals lie slightly lower in energy than the π
orbitals. In the S anion, there is greater mixing of the U−O and
U−S bonding orbitals with other valence levels, and as for Se,
the U−O-based orbitals are significantly more stable, with σ
below π. By contrast, the U−O bonding orbitals in the anion of
3 are similar in relative energy to the well-known electronic
structure of UO2

2+, with the “σu” orbital being appreciably
destabilized with respect to the other levels.3,26 This arises from
the “pushing from below” mechanism27 involving a filled−filled
interaction between the semicore uranium 6p atomic orbitals
and the σu valence level. It results in a hole in the U 6p shell,
and the calculated (Mulliken) populations for U 6p are 5.63,
5.77, and 5.79 for the anions of 3, 1, and 2, respectively (i.e., the
hole is biggest for the bisoxo system).
In general, both the U−E σ and π bonding orbitals become

increasingly localized on the chalcogen atom as group 16 is
descended. This is exemplified by the compositions of the U−E
σ bonding orbitals shown in Figure 2, which are given in Table
2. These data, which were generated by considering only the

contributions of the O, E, and U atomic orbitals to the σ levels,
also suggest that the U−E bonding becomes less covalent as the
chalcogen becomes heavier. Despite the reduced covalent
character, the U−E σ bonds exhibit substantial f orbital
participation, comparable to that observed in uranyl itself.
In further efforts to assess the U−E bonding, we employed

the quantum theory of atoms in molecules (QTAIM), a
technique that focuses on the topology of the electron density
rather than the orbital structure.28 We recently adopted this
approach to probe the extent of covalency in a range of
actinide−ligand bonds,14,29−33 focusing on diagnostic metrics
such as the electron density (ρ) and energy density (H) at the
actinide−ligand bond critical points (BCPs). ρ and H data for
the U−E and U−N BCPs in 1−3 are collected in Table 3;

accepted wisdom holds that values of ρ greater than 0.2 are
typical of covalent bonds and that smaller density indicates a
more closed-shell interaction. H at the BCP is negative for
interactions with significant sharing of electrons, its magnitude
reflecting the ‘‘covalence’’ of the interaction.34 There is little
difference among these metrics for the U−O bonds in the three
complexes; in all cases, the QTAIM data indicate that these
bonds are rather covalent. As group 16 is descended, however,
ρ and H indicate much reduced covalency, in agreement with
the orbital population data presented in Table 2.
Gopinathan−Jug bond orders35 are collected in Table 4. The

U−O bond order is essentially unaltered in going from 3 to 2

and 1, but replacement of the second O by S and Se leads to a
fall in U−E bond order, albeit by only ca. 7%. Moving from the
anion in 3 to the anions containing the heavier chalcogens
results in an increase in the U−N bond order, in agreement
with the corresponding shortening in the U−N bond length
(Table 1), the reduced covalency in the U−E bond interaction,
and also the increase in the absolute values of the U−N BCP
metrics (Table 3). All of these data suggest that as the U−E
bond becomes less covalent, the U−N bonding becomes
increasingly so.
In summary, we have synthesized and characterized the first

sulfur- and selenium-substituted analogues of the uranyl ion,
[OUE]2+ (E = S, Se). The chalcogenide ligands are likely
stabilized by the presence of the strongly donating silylamide
ligands and the overall negative charge, which stabilizes the 6+
charge on the uranium center and disfavors auto-oxidation of
the chalcogenide ligand. Calculations revealed considerable f

Figure 2. Molecular orbital energy level diagram for the U−E bonding
orbitals of the anions in 1−3. Other orbitals within the energy range
presented that are not of U−E character have been omitted for clarity.
For E = S and E = O, mixing of the O−U−E σ and π orbitals with U−
N bonding levels leads to a more complicated valence electronic
structure than for E = Se, and hence, more orbitals are shown for these
complexes.

Table 2. Composition (Mulliken, Normalized to 100%) of
the U−E σ Orbitals Shown in Figure 2 for the Anions in 1−3

1 2 3

O p 8 5 43
E p 52 62 −
U 40 (f) 33 (f) 57 (44 f, 13 p)

Table 3. Electron Densities (ρ) and Energy Densities (H) at
Selected Bond Critical Points of 1−3 (H in Bold, Both in
Atomic Units)

1 2 3

U−O 0.266/−0.212 0.263/−0.208 0.271/−0.223
0.268/−0.217

U-E 0.123/−0.054 0.099/−0.037 −
(U−N)av 0.091/−0.023 0.094/−0.024 0.084/−0.019

Table 4. Gopinathan−Jug Bond Orders of Selected Bonds in
1−3

1 2 3

U−O 2.30 2.29 2.29, 2.26
U−E 2.15 2.11 −
(U−N)av 0.97 0.99 0.88
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orbital character in the U−E interactions; however, this
interaction becomes less covalent as group 16 is descended.
In future work, we will continue our attempts to isolate the
tellurium analogue, [OUTe]2+ and also work toward the
synthesis of [US2]

2+- and [USe2]
2+-containing complexes,

whose prospects for isolation appear to be more plausible
given the isolation of 1 and 2.
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